CES Couleur de l'océan
CES Couleur de l'océan
Le pôle Océan ODATIS a pour objectif général de promouvoir et faciliter l’utilisation des observations réalisées dans l’océan ou à son interface avec les autres milieux, à partir de mesures in situ et de télédétection. Outre l’accès aux données, le pôle a vocation à développer des « produits » issus de ces données.
Pour cela, le Consortium d’Expertises Scientifiques (CES) Couleur de l’Océan a été constitué pour mettre en réseau la communauté impliquée par ce thème et pour échanger autour des expertises nationales, identifier les besoins des utilisateurs et promouvoir la conception de nouvelles méthodes/algorithmes ou/et valider les produits dérivés (propriétés optiques et biogéochimiques de l’océan).
La finalité de ce CES est d’initier une dynamique autour de la couleur de l’eau océanique des domaines hauturiers, côtiers et à l’interface continent-océan, de contribuer à la mise en place de groupes de travail, et à améliorer l’accès à des produits satellitaires adaptés aux besoins des utilisateurs.
Le CES Couleur de l’Océan est porté par David Doxaran (LOV, CNRS/SU) et Vincent Vantrepotte (LOG, CNRS) voir leurs contacts dans l'onglet ci-dessous.
Atelier #6 - mars 2025
Cet atelier du CES Couleur de l'océan se tiendra du 18 au 20 mars 2025 en présentiel, à Villefranche-sur-Mer, ou via visioconférence. Programme à venir.
Retrouvez toutes les informations détaillées sur cette page.
Atelier#5 - mars 2024
Cet atelier du CES Couleur de l'océan se tient les 13 et 14 mars en présentiel, à Paris, ou via visioconférence : points détaillés sur les produits ODATIS-MR et leur distribution (via FTP et le Geobrower), sur les groupes de travail hyperspectral et SST-HR, ainsi que sur les interactions entre les pôles ODATIS et THEIA (télédétection des eaux continentales, littorales et côtières), activités en 2024.
Retrouvez toutes les informations détaillées sur cette page.
Atelier#4 - mars 2023
L'atelier#4 du "CES Couleur de l'Océan" a eu lieu du 6 au 8 mars 2023, en présentiel à Paris et via visioconférence: rappel du rôle du CES Couleur de l'Océan au sein du pôle ODATIS, nouveaux projets de recherche et nouvelles thèses de doctorat en France en lien avec la couleur de l’océan; état des lieux des produits satellitaires Couleur de l’Océan, activités Cal/Val de ces produits, groupes de travail ‘hyperspectral’ et celui nouvellement crée, le groupe IRT ou SST-HR en lien avec la future mission spatiale TRISHNA; discussions sur les interactions et mise en place de collaborations entre les spécialistes de la Couleur des eaux continentales du pôle THEIA et de la Couleur de l'Océan du pôle ODATIS.
Retrouvez toutes les informations détaillées sur cette page.
Atelier #3 - février 2022
L'atelier #3 du "CES Couleur de l'Océan" a eu lieu du 23 au 24 février 2022. Rappel des besoins exprimés par le CES en côtier avec les 2 composantes MR (Moyenne Résolution) et HR (Haute Résolution). Pour chaque composante : analyse de l’existant (CMEMS, lien vers le catalogue), retour sur les besoins, discussion des solutions possibles.
Retrouvez toutes les informations détaillées sur cette page.
Atelier #2 - décembre 2020
Cet atelier du CES Couleur de l'océan s'est déroulé le 16 décembre 2020 en visioconférence. Les principales discussions ont fini de préciser le rôle de ce CES, de recenser les produits satellites disponibles, de développer les interactions avec la communauté in situ ainsi que recueillir les besoins de la communauté.
Retrouvez toutes les informations détaillées sur cette page
Atelier #1 - mai 2019
Retrouvez toutes les informations détaillées de ce 1er atelier sur cette page : accès aux présentations, compte-rendu, liste des participants.
Ce premier atelier du CES Couleur de l'océan s'est déroulé les 28 et 29 mai 2019 à Paris avec l’objectif de réunir les communautés qui travaillent autour du thème Couleur de l’Eau (traitement image ; données in situ) pour échanger autour des expertises nationales et donc d’initier une dynamique autour de la Couleur de l’Eau hauturière, côtière et à l’interface continent-océan, et de contribuer à la mise en place de Consortium d’Expertises Scientifiques propres au pôle ODATIS.
Un groupe de travail «d’imagerie hyperspectrale » s’est formé à la suite d'un atelier du CES Couleur de l’eau en 2022 pour permettre aux chercheurs intéressés par les données issues des capteurs hyperspectraux, de partager, comparer des méthodes d’inversion originales et de discuter des résultats obtenus. Avec de nouveaux capteurs en vol, combinés à des hautes résolutions spatiales, les données hyperspectrales ouvrent de nouvelles possibilités d'explorer les données satellitaires sur la couleur de l'eau.
Faciliter l’accès à l’hyperspectral pour des applications en milieu aquatique
Cette page "Données et Méthodes" du Groupe de Travail Hyperspectral est destinée aux utilisateurs pour faciliter l'accès aux données hyperspectrales : données satellites disponibles et liens d'accès pour DESIS, PRISMA, ENMAP; Méthodes de corrections atmosphériques et du « glint » dédiées aux observations hyperspectrales; Méthodes inverses d’estimation de produits géophysiques et biologiques; Librairies spectrales de réflectances de fonds aquatiques et zones intertidales; Données in situ (radiométrie, colonne d’eau, fond aquatique) de validation des observations satellitales sur des sites connus; Références bibliographiques.
Groupe de travail "Imagerie hyperspectrale" - février 2024
Le groupe de travail «d’imagerie hyperspectrale » du CES Couleur de l’eau s'est réuni au cours d'une 2ème réunion, en février 2024 pour échanger sur les actualités sur l’hyperspectral en zones aquatiques, pour présenter plusieurs projets et discuter des besoins actuels en Hyperspectral appliqué aux milieux aquatiques. Accédez à la page de cette 2ème réunion avec accès aux présentations, résumés et compte-rendu.
Groupe de travail "Imagerie hyperspectrale" - décembre 2022
Accédez à la page de leur 1ère réunion qui s'est tenue le 16 décembre 2022 avec accès aux présentations, résumés et compte-rendu. Cette 1ère réunion avait pour objectifs : Présenter et faire connaître au sein de notre communauté les thématiques étudiées, les méthodes et les données utilisées (in situ et satellite), Présenter les capteurs hyperspectraux en vol (DESIS, PRISMA et EnMap) et futurs (PACE, AquaWatch et Galène), Réfléchir sur les moyens de faciliter l’utilisations des données hyperspectrales au sein de la communauté française.
Offre de thèse - Couleur de l'océan avec lidars aéroportés et spatiaux
Annonces couleur de l'eau chlorophylle phytoplancton
PhD Fellowship Position in Monitoring the ocean color using air- and space-borne lidar
A 3-year PhD fellowship is proposed by the Laboratory of Oceanology and Geosciences LOG (Wimereux, France) on the use of an airborne lidar to monitor the vertical distribution of the upper ocean.
- Qualifications: Master degree in remote sensing or oceanography or environmental sciences
- Application closure date: March 15 2024
- Position Length: 3-year fellowship from October 2024
- Location: The candidate will be located at LOG, 32 avenue Foch, 62930 Wimereux, France
- Applicants must submit:
- A detailed CV, including the e-mail and phone number for three references and the grades for the master.
- A short cover letter explaining the applicant’s experience related to the position and motivation
- For questions and application’s submission, please contact: Cédric Jamet
- This PhD will be done in collaborations with Cyrille Flamant and Julien Delanoë from LATMOS and the International team at the International Space Sciences Institute
Objectives
Passive space-borne observations of the ocean color have enabled a global view of the distribution of phytoplankton and marine primary productivity. An uninterrupted record of global ocean color data has been sustained since 1997. However, these measurements are limited to clear sky, day-light, high Sun elevation angles, ice-free oceans and are exponentially weighted toward the ocean surface. Moreover, the processing of the ocean color images requires the knowledge of the atmospheric components (gases, air molecules and aerosols).
Lidar (Light Detection and Ranging) is a “laser radar” technique that has been used for a wide range of atmospheric and ocean applications. As an active remote sensing technique, it can overcome some of the above-mentioned limitations of passive observations. Despite several cases that demonstrated oceanic applications of ship-, air- and space-borne lidars, this tool has not received significant attention from the ocean color remote sensing community. Recently, it has regained interest from the ocean community as new studies used the lidar signal from the space-borne CALIOP/CALIPSO and ATLAS/Ice-Sat-2 instruments to estimate the ocean particulate backscatter and showed the feasibility of using both lidars to provide accurate estimates of the ocean color over the globe and in the polar regions (and over the water column for ATLAS). Thus, satellite lidars are a natural complement to passive ocean color radiometric remote sensing, operating under thin clouds, between holes in broken clouds, and in polar regions, providing vertical measurements both during day and night. Lately, the Italian Space Agency started the development of a space-borne lidar, named CALIGOLA, planned to be launched in 2026. The instrument will be a three-band elastic lidar at 355, 532 and 1064 nm with polarization and will enable to detect the variability of the phytoplankton over the vertical. Coupled to passive observations, CALIGOLA will provide for the first time a 3-D view of the ocean color.
In France, the LATMOS laboratory developed in collaboration with DT-INSU and operates an airborne lidar, named LNG (part of the RALI platform, Instrument National INSU) which has three wavelengths 355, 531 and 1064 nm with High Spectral Resolution and polarization capabilities at 355 nm. The High Spectral Resolution Lidar (HSRL) enables the decoupling between the molecular and particles. LNG has been widely used during airborne campaigns for studying the aerosol and clouds in the atmosphere. In September 2021, LNG participated to the CADDIWA airborne campaign located in Cabo Verde. During this campaign, a sea campaign was organized by Cédric Jamet from LOG to collect bio-optical and biogeochemical parameters at fixed stations. Several of these stations were also concomitant to the LNG flight paths.
LNG was only developed for atmospheric applications and has never been used for oceanic applications. The main topic of the
PhD will be to develop an algorithm for processing the LNG data at 355 and 532 nm. The lidar at 532 nm is an elastic lidar. The lidar signal return is basically proportional to volume backscattering coefficient (which is the sum of the backward scattering from water molecules, βW, and suspended particles βP) and the attenuation coefficient of the lidar signal, KL which is a proxy of the diffuse attenuation coefficient KD The parameter βP is of interest, as it is linked to the hemispherical particulate back-scattering parameter, bbp, which is an important in ocean color (as it depends on the size, type and composition of the optically-active marine particles). Unfortunately, this technique cannot separate the backscattered signal from attenuation, contrary to HSRL technique. Two algorithms will be studied : one using the elastic lidar at 532 nm based on a perturbation algorithm or machine learning and the second based on the HSRL (or could also be based on machine learning using only the particulate channel). Once the algorithms developed, the LNG data acquired during the CADDIWA campaign will be processed and the estimates of bbp and KD will be compared to the in-situ measurements. Depending of the quality of the estimates, the LNG archives will be processed to provide, for the first time, oceanic products. At last, these algorithms will also be developed in connection with the development of CALIGOLA.
Références bibliographiques
- Abascal-Zorrilla N., Vantrepotte V., Huybrechts N., Dingh Ngoc D.,Anthony E.J., Gardel A. (2020) Dynamics of the estuarine turbidity maximum zone from landsat-8 data : The case of the maroni river Estuary, French Guiana. Remote Sensing, 12(13):2173. doi:10.3390/rs12132173.
- Alvain. S., Moulin C., Dandonneau Y. and Bréon F.M., Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep Sea Res. I, 52, 1989-2004, (2005).Alvain S., C. Moulin, Y. Dandonneau, and H. Loisel. (2008). Seasonnal distribution and succession of dominant phytoplankton groups in the global ocean : a satellite view. Global Biogeochemical Cycles 22, GB3001.
- Ben Mustapha Z, Alvain S, Jamet C, Loisel H, Dessailly D (2014) Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery : Application to the detection of phytoplankton groups in open ocean waters. Remote Sensing of Environment, 146:97-112.
- Bonelli A.G. V. Vantrepotte; D. Schaffer Ferreira Jorge, J. Demaria; C. Jamet; D. Dessailly; A. Mangin; O. Fanton d’Andon; E. Kwiatkowska; H. Loisel. (under review) Colored dissolved organic matter absorption at global scale from ocean color radiometry observation: spatio-temporal variability and contribution to the absorption budget, Remote Sensing of Environment.
- Bonelli et al., (in prep) Estimation of DOC surface content at global scale from remote sensing observation.
- Dinh Ngoc D. Loisel H., Duforêt-Gaurier L., Jamet C., Vantrepotte V., Goyens C., Chu Xuan H. , Minh N.N., Van T. N. (2019) Atmospheric correction algorithm over coastal and inland waters based on the Red and NIR bands : application to Landsat-8/OLI and VNREDSat-1/NAOMI observations. Optics Express, 27(22):31676-31697. Doi:10.1364/OE.27.031676.
- Dinh Ngoc D., Loisel H., Jamet C., Vantrepotte V., Duforet-Gaurier L., Minh C.D., Mangin A. (2019) Coastal and inland water pixels extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI. Remote Sensing of Environment, 223:208-228. doi : 10.1016/j.rse.2019.01.024.
- Dogliotti A.I., Ruddick K.G., Nechad B., Doxaran D. and E. Knaeps (2015). A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters. Remote Sensing of Environment 156, 157–168
- Duforêt-Gaurier, L., H. Loisel, D. Dessailly, K. Nordkvist, S. Alvain. (2010) Estimates of particulate organic carbon over the euphotic depth from in situ measurements. Application to satellite data over the global ocean. Deep Sea Research Part I: Oceanographic Research Papers, Elsevier, 351-367.
- Duforêt-Gaurier et al., (en prép). Estimation of the phytoplancton part of the particulate organic carbon from space.
- Gernez P, Doxaran D, Barillé L (2017). Shellfish Aquaculture from Space: Potential of Sentinel-2 to Monitor Tide-Driven Changes in Turbidity, Chlorophyll Concentration and Oyster Physiological Response at the Scale of an Oyster Farm. Frontiers in Marine Science, 4, doi: 10.3389/fmars.2017.00137.
- Gohin F., Druon J., Lampert L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters . International Journal Of Remote Sensing , 23(8), 1639-1661 . DOI 10.1080/01431160110071879.
- Gons, H. J., Rijkeboer, M., and Ruddick, K. G. (2005). Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. J. Plankton Res. 27, 125–127. doi: 10.1093/plankt/fbh151.
- Han B., Loisel H., Vantrepotte V., Mériaux X., Bryère P., Dessailly D., Xing Q. and Zhu J.(2016) Development and validation of a semi-analytical algorithm for the retrieval of Suspended Particulate Matter from remote sensing over clear to very turbid waters. Remote Sensing, 8(3):211.
- Jamet C., Loisel, H., Dessailly D. (2012) Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion, Journal of geophysical research,117,C10023,14 PP.hal-00823342.
- D. Jorge, H. Loisel, C. Jamet, D. Dessailly, J. Demaria, A. Bricaud, S. Maritorena, X. Zhang, D. Antoine, T. Kutser, S. Bélanger, V. O. Brando, J. Werdell, E. Kwiatkowska, A. Mangin, O. Fanton d’Andon, (under review) A two-step semi analytical algorithm (2SAA) for estimating inherent optical properties over oceanic, coastal, and inland waters from remote sensing reflectance, Remote Sensing of Environment.
- Loisel, H., J. M. Nicolas, P. Y. Deschamps, and R. Frouin (2002), Seasonal and inter-annual variability of the particulate matter in the global ocean, Geophys. Res. Lett.,29(24), 2196, doi:10.1029/2002GL015948.
- Loisel H, Vantrepotte V, Dessailly D, Mériaux X (2014) Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing. Optics Express 22(11):13109-13124. hal-01010236, doi:10.1364/OE.22.013109.
- Loisel, H., D. Stramski, D., Dessailly, C. Jamet, L. Li, and R.A. Reynolds (2018) An inverse model for estimating the optical absorption and backscattering coefficients of seawater from remote-sensing reflectance over a broad range of oceanic and coastal marine environments. Journal of Geophysical Research, 123(3):2141-2171. doi : 10.1002/2017JC013632.
- Mélin, F, Vantrepotte, V. (2015). How optically diverse is the global coastal ocean? Remote Sensing of Environment, 160, 235-25.
- Minghelli-Roman A., Dupouy C., 2013. Influence of water column chlorophyll concentration on bathymetric estimations in the lagoon of New Caledonia using several MERIS images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens, 77, 1-7.
- Minghelli-Roman A., Dupouy C., 2014 Seabed mapping in the lagoon of New Caledonia with MeRIS images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens, vol 7, n°6, 2619-2629.
- Novoa S., Doxaran D., Ody A., Vanhellemont Q., Lafon V., Lubac B. and P. Gernez (2017). Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels CoastalWaters. Remote sensing, 9, 61; doi:10.3390/rs9010061
- Ody A., Doxaran D., Vanhellemont Q., Nehad B., Novoa S., Many G., Bourrin F., Verney R., Pairaud I. et B. Gentili (2016). Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal River Plume. Remote Sens. 2016, 8(3), 245; doi:10.3390/rs8030245.
- Ody A, Thibaut T, Berline L, Changeux T, André J-M, Chevalier C, et al. (2019) From In Situ to satellite observations of pelagic Sargassum distribution and aggregation in the Tropical North Atlantic Ocean. PLoS ONE 14(9): e0222584. doi: 10.1371/journal.pone.0222584.
- Ouillon, S., Douillet, P., Petrenko, A., Neveux, J., Dupouy, C., Froidefond, J.-M., Andréfouët, S., A. Muñoz-Caravaca, 2008, Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters, Sensors 8, 4165-4185; doi: 10.3390/s8074165.
- Tran Trung K., Duforêt-Gaurier L., Vantrepotte V., Schaffer Ferreira J. D., Mériaux X., Cauvin A., Fanton d’Andon Odile and Loisel Hubert (2019) Deriving Particulate Organic Carbon in Coastal Waters from Remote Sensing: Inter-Comparison Exercise and Development of a Maximum Band-Ratio Approach. Remote Sensing, V11, 23. doi 10.3390/rs11232849.
- Vantrepotte, V. ; Danhiez, F.-P. ; Loisel, H. ; Ouillon, S. ; Mériaux, X. ; Cauvin, A. ; Dessailly, D. 2015. CDOM-DOC relationship in contrasted coastal waters : implication for DOC retrieval from ocean color remote sensing observation. Optics Express, Vol. 23 Issue 1, pp.33-54.
- Wattelez, G., Dupouy, C., Mangeas, M., Lefèvre, J., Touraivane, Frouin, R., 2016. A statistical algorithm for estimating chlorophyll concentration in the New Caledonian lagoon, Remote Sens. 8(1), 45; (IF: 3.278, open access). doi: 10.3390/rs8010045.
- Wattelez, G., Dupouy, C., Juillot, F., Fernandez, J.M., Lefèvre, J., Ouillon, S., 2017. Remotely-sensed assessment of turbidity with MODIS in the oligotrophic lagoon of Voh-Koné-Pouembout area, New Caledonia, Water, 9, 737, doi: 10.3390/w9100737
David DOXARAN (mail)
Laboratoire d'Océanographie de Villefranche
UMR 7093 - CNRS / SU
181 chemin du Lazaret
06230 Villefranche-sur-Mer
Tel +33 (0) 6 27 38 64 58 Fax +33 (0) 4 93 76 37 39
site web du LOV
site web de l'équipe OMTAB : Optique marine, télédétection et applications biogéochimiques
Vincent VANTREPOTTE (mail)
Laboratoire d’Océanologie et de Géosciences
UMR8187, CNRS, ULCO, ULILLE, IRD
32 avenue Foch
62930 WIMEREUX
Tel : +33 (0)3 21 99 64 20